
Open Distributed Computing

The Overall Architecture

Version 1.0

NSA-93-019

Norman Kincl

Jack Armstrong

Architecture and Technology Application

Networked Systems Architecture

October, 1993

Open Distributed Computing is Hewlett-Packard�s solution to cooperative

computing in a multi-vendor, heterogeneous environment. Implementation in

a customer enterprise information processing system should be guided by a

set of architectural specifications we call the Overall Architecture.

This document defines the nature of the Overall Architecture and introduces

the three main components�User Roles, the Hewlett-Packard Open

Distributed Computing Architectural Framework and IT Processes.

H

Legal Notices

© Copyright Hewlett-Packard Company 1993.

The information contained in this document is subject to change without notice.

Hewlett-Packard Company makes no warranty of any kind with regard to the information

in this document, including, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose. Hewlett-Packard Company shall not be liable for errors

contained herein or direct, indirect, special, incidental, or consequential damages in connection

with the furnishing, performance or use of this material.

This documentation contains information which is protected by copyright. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, transmitted, adapted,

or translated, in any form or by any means, electronic, mechanical, photocopying, or otherwise,

unless the document is copied verbatim, in its entirety, with all Hewlett-Packard copyrights

clearly displayed exactly as in the original, and providing that the resulting derived work is

distributed under the terms identical to this one.

Trademarks

OSF and DCE are trademarks of the Open Software Foundation, Inc.

NFS is a trademark of Sun Microsystems, Inc.

MS-DOS is a registered trademark of Microsoft Corporation.

Printing History

The document was first printed in the United States of America on October 27, 1993.

This copy was printed in the United States of America on November 19, 1993.

Its master file name is I:\ATA\ARCH\OVERALL\PAPER.SAM

ii

Open Distributed Computing

The Overall Architecture

Version 1.0

NSA-93-019

Norman Kincl

Jack Armstrong

Open Distributed Computing is Hewlett-Packard�s solution to cooperative

computing in a multi-vendor, heterogeneous environment. Implementation of

this infrastructure in a customer enterprise information processing system

should be guided by a set of architectural specifications we call the Overall

Architecture. This document defines the nature of the Overall Architecture and

introduces the three main components�User Roles, the Hewlett-Packard Open

Distributed Computing Architectural Framework and IT Processes.

1 Prologue

There are three crucial factors influencing modern business enterprises and their use of

information processing technology�all involving change. First, businesses, and the world in

which they operate, are being subjected to constant changes in markets, products, and customer

expectations. Second, there has been a fundamental shift in the number of end users and their use

of information technology. Finally, computing technology itself has advanced at a rapid rate.

The 1990s are arguably the fastest paced decade in human history. In business, science, and even

politics, fast moving changes and events require increased efficiencies in time-to-market, service

industry response rates and rapid adaptation to market fluctuations. To meet these challenges, the

management process has to be accelerated as well. New business structures with fewer

management reporting levels are allowing more rapid decisions to be made at lower levels in the

organization. Businesses are finding that these new organizational structures increase the

interdependence of entities and impose a critical need for broad access to information and tools.

This increased need for access to information has greatly increased the ranks of information

technology users and the use of personal workstations�both personal computers and engineering

workstations. Many firms have installed local area networks to allow teams of physically adjacent

specialists and support staff to interact and share tools and information. With the introduction of

modern networking technology, users of these systems now have access to an increasing range of

services and information. With advances in networking technologies, many of the problems of

physical connectivity were solved.

Unfortunately, by simply interconnecting existing systems, a daunting variety of confusing

methods for accessing multiple applications and information bases was created. Historically,

information processing systems have been developed by single vendors to solve a single problem,

H
Networked Systems Architecture

or at best a small set of closely related problems. These nonstandard proprietary systems provided

barriers to interoperability between different applications and different vendors� platforms.

Applications developed for specific types of users (e.g., engineers, technicians, data entry typists,

secretaries) often appeared awkward and difficult to use by others. Finally, management and

control of networks of heterogeneous systems are hopelessly complex. One solution to these

obstacles�to start over and move dramatically to a new and consistent information

technology�is prohibitively expensive. Not only would this incur the loss of investment in

existing systems, but would require retraining of users and interruption of their normal work.

Recent advances in information processing technology�Reduced Instruction Set Computer

(RISC) architecture, cost effective high volume data storage, high speed networks such as

Asynchronous Transfer Mode (ATM), and the introduction of client/server architecture have all

contributed to making many of the new access requirements practical. Advanced graphical user

interfaces provide intuitive access to the systems we desire, but they require powerful computer

systems and substantial memory to implement. Distributed applications impose greatly increased

load on networks, but fortunately we are seeing better, faster, and more cost effective hardware

solutions to meet these challenges.

Hewlett-Packard�s Open Distributed Computing is designed to facilitate cooperative computing

in a multi-vendor, heterogeneous environment that is based on open systems and standards. It is

designed to allow flexibility in the computing environment, helping enterprises to adapt systems

to changing needs.

In an Open Distributed Computing environment, users may transparently obtain services and

resources from a network of computers behaving as a single integrated whole. Users may access

the system through workstations, terminals, or personal computers integrated into this network.

They have a consistent view of these services and resources regardless of location or

implementation. This view is independent of the heritage of these services either as legacy

applications or newer distributed, client/server applications.

Success in this endeavor will require an infrastructure that supports interoperability and

distribution of diverse applications and collections of information. This infrastructure will be

implemented on multi-vendor heterogeneous systems�encompassing mainframes,

minicomputers, work stations, personal computers (some portable) and, increasingly, special

purpose servers on an integrated network. Ideally, this infrastructure should be implemented

entirely in common open standards, but investments in current applications, information bases,

and training cannot be ignored or suddenly replaced. The rapidly emerging open standards must

form the backbone of future systems, but migration and integration paths to these standards must

be provided.

Hewlett-Packard�s Open Distributed Computing is predicated on meeting the following major

objectives:

Provide users with enterprise wide access to information and information processing

facilities, without exposing the complexities of the underlying systems.

Integrate heterogeneous hardware, operating system, and network platforms.

Make pervasive use of open standards.

Implement client/server architectures, while utilizing and enhancing existing legacy systems.

Allow administrators to manage these computing environments at the highest level of

abstraction commensurate with the systems and devices being managed.

Meeting these objectives in a specific customer enterprise computing environment will require a

rigorous design methodology and complete specifications that guide the implementation,

management and use of that environment.

Open Distributed Computing

Page 2 of 21

2 Introduction to the Overall Architecture

The Overall Architecture of an enterprise information processing system encompasses all aspects

of that system: structure, functionality, environment, and operational processes. To define better

what an Overall Architecture is, we must first define some basic terminology.

System � �a set of different [components] so connected or related as to perform a unique

function not performable by the [components] alone� [Rechtin91]. Each of the components

may be a complex system in its own right.

Information Technology (IT) System � the enterprise-wide information processing system.

The purpose of an IT System is to provide the technological support to an enterprise to meet

its information processing needs. Its components include computers, networks, applications,

data bases and support services.

Computer System � an individual computer that, together with the networks, applications

and other components, forms the IT System.

System Architecture � specification of �the structure of the system� [Rechtin91]. Thus, the

System Architecture specifies the complete structure of the IT System.

Overall Architecture � �the structure not only of the system, but of its functions, the

environment within which it will live, and the process by which it will be operated�

[Rechtin91].

Thus the overall architecture should address more than just the structure of the various

components making up the IT System. While it is critical to understand the various pieces of the

IT System and how they fit together, this is not sufficient. To build and operate an IT System that

successfully addresses the business objectives of an enterprise, the overall architecture of the

system must be understood.

2.1 Basic Model

The Open Distributed Computing

Architecture deals with three major areas.

The first is concerned with the people

involved with the system. In particular, it

looks at the major roles that users of the

system play, and the interactions between

these roles. The second area of focus is the

technology that comprises the system. Here

we answer questions such as �what are the

components that make up the system and

how do they relate?� Finally, the

Architecture covers the IT processes. Here

the focus is on processes used to build,

maintain, administer and evolve the system.

These three areas fit within the overall

architecture of the system�the IT system is

part of a broader environment that includes

the whole enterprise and its partners.

The following sections cover each of the areas of the architecture separately.

The Overall Architecture

Page 3 of 21

People

Technology Processes

Figure 1: Basic Model

3 People � User Roles

People interact with the information system in many different ways, depending on their role (or

roles) within the enterprise. In a small enterprise, one person may be active in all the roles. In a

very large environment, each of the roles may consist of many people, or even complex

organizations. The roles categorize the types of interactions with the system.

3.1 End User

The primary reason for any information processing technology is augmenting the participants�

skills needed for the business activities necessary to operate an enterprise. End users regard the

system as a tool to support their daily business activities. Typically, systems are funded by the end

users or on their behalf. Successful use of a system by these users is the ultimate measure of any

investment in information processing technology.

The need for faster answers to complex problems or simply the elimination of soul-destroying

repetitive tasks has not changed since the advent of the first computers. What has changed is the

ability to apply this technology to the problems of decision making and communications on a

global scale. Open Distributed Computing strives to extend these technological advances to the

largest possible audience of end users in ways that best augment their ability to contribute to the

fundamental business of the enterprise.

3.1.1 Enterprise Customers and Partners

In some businesses, there is an additional user role�that of users external to the enterprise.

These include the enterprise�s customers and business partners who have direct access to the

enterprise IT system. For example, a bank customer using an Automatic Teller Machine or

on-line account access is a user of the bank�s information system. A company may give its

preferred suppliers direct access to portions of its IT system. In an information utility enterprise,

the vast majority of end users will be in this category.

3.2 Builder

Systems that provide access to distributed tools and information simplify the end user�s life, but

seriously complicate that of system builders. The very act of masking the underlying complexities

of these systems from the user requires dealing with a level of complexity not present in

monolithic systems. Builders themselves require sophisticated tools, and a runtime environment

that provides a rich set of services to support distributed applications.

The builder role involves both building and evolving the system. Two separate concepts are

involved here. First, component providers need to provide the components from which the system

is built. Second, a system integrator needs to architect and engineer the IT system.

3.2.1 Component Provider

A component provider creates components that will be part of the system. These components can

be simple individual pieces of hardware, or complex systems on their own (e.g., computer

systems).

3.2.1.1 Component Developer

Normally, a component developer builds components (hardware or software) that are application

independent. This work is usually not done by the enterprise. Except for applications, most

components are purchased..

Open Distributed Computing

Page 4 of 21

3.2.1.2 Application Developer

The application developer is also a component provider. Applications are specific to the

enterprise business requirements. There is a trend towards buying off-the-shelf applications

where feasible, but exceptions are made for unique applications or those that provide competitive

advantage.

3.2.2 System Integrator

The system integrator combines the various components into a system according to a defined

architecture. The system integrator may need to write some integration and interfacing software

to accomplish this task. Increasingly, this function is outsourced.

3.3 Administrator

Administrators watch over the system to assure that it is meeting the Quality of Service goals

dictated by the business needs of the enterprise. Administrators need full control within their

domain, or sphere of responsibility, with as little interference from the rest of the network as

possible. As more systems are joined by networks, the configuration, management, and control of

multi-vendor networks become enormously complex.

The activities of administrators fall into four major categories: end user services; operations;

administration; and maintenance and installation.

3.3.1 End User Services

Administrators are responsible for assisting the end users and ensuring that they derive

maximum benefit from the available systems. These activities typically include

operate help desk services

provide on-site support

provide end user consulting

track end user problems

provide end user training

monitor Service Level Agreements

3.3.2 Operations

Operators work to guarantee smooth daily operation of all components of the system. This

typically involves managing

operational problems

problem escalation

output (e.g., central printers)

storage resources (e.g., tapes)

job control and flow

console operations

and monitoring

performance

security

The Overall Architecture

Page 5 of 21

3.3.3 Administration

System Administration encompasses the high-level functions required to implement strategic

business policy and to manage system resources accordingly. Typical functions are management

of

system configuration/change

security configuration

user access/options

system accounting

3.3.4 Maintenance and Installation

Maintenance and Installation provides for the physical aspects of the system. These activities

cannot be totally centralized�they require on-site support. Example functions are

installing hardware

installing and maintaining cable infrastructure

maintaining system components

ordering and stocking supplies

3.4 Strategic Planning

Strategic planning is the link between the IT system and the business. Strategic planning will

define the information infrastructure

define IT architectural strategy and direction

coordinate and support the work of the builders and administrators

Strategic planning activities include

define the Information Systems strategy

define the Architecture

define IT processes

negotiate Service Level Agreements

implement planning

evaluate projects

manage cost control

perform asset and budget planning

3.5 Common Role Interactions

Figure 2 on page 7 describes some common interactions between the various user roles and the

IT system. This is not meant to be a complete set, but rather an example of some of the most

common types of interactions that occur.

It is important to understand these interactions for two reasons. First, they define some of the

requirements placed upon the system. This is primarily seen by looking at the details of the

interactions that the user roles have with the IT system. Second, these interactions have an

impact on the processes that surround the system. We address processes further in the section

�Process� on page 16.

Open Distributed Computing

Page 6 of 21

4 Technology � The System Architecture

The implementation of an information processing system should be done according to a System

Architecture designed to meet the needs of the enterprise. The goal is to provide open distributed

computing in a heterogeneous environment. Our starting point for this process is

Hewlett-Packard�s Open Distributed Computing Architectural Framework. This framework

establishes the context, general concepts, requirements, relationships, and terminology to be used

in subsequent levels of architectural design and resulting systems. Within this framework, and

according to its guidelines, detailed architectural designs may be developed and integrated with

other related architectures. The framework will provide the vision, direction, and master template

for seamless inclusion of many existing systems and heterogeneous platforms, specifying the

standards required for interoperability and support of distribution and heterogeneity.

Since every enterprise has unique needs that need to be met by an information system, we

introduce here another concept�reference architectures. A reference architecture provides an

example system architecture useful for particular domains and is derived from the Architectural

Framework.

4.1 The Framework

The Open Distributed Computing Architecture is built upon an architectural framework. The

architectural framework is a high-level model and a set of guidelines for building system

architectures. As shown in figure 3 on page 8, this framework is not specific to any business,

technology or user domain, but is derived from domain-independent characteristics. The

requirements for open standards, heterogeneity and distribution have been used to create the

Open Distributed Computing Architectural Framework.

The Overall Architecture

Page 7 of 21

Strategic
Planning

End Users

Builder

Computing Env.

Administrator

Usage Trends

Status

Requirements,
Architecture

Funding, Business Needs

Support, Service

Control, Maintain

Technology
Options

Design,
Components

Tools, Processes

Productivity

Policies

Certification

Figure 2: Common User Role Interactions

A key element of Hewlett-Packard�s Open Distributed Computing is an emphasis on adoption of

and adherence to standards. The acceptance and utilization of standards protect major

investments in applications and people. Standards increase opportunities for interoperability and

use of applications by a broader range of users, and will yield an increased return on investment.

Use of standards increases opportunity for vendor independence and lower costs.

There is a broad spectrum of standards�ranging from private, proprietary de facto standards

(such as MS-DOS from Microsoft), to public proprietary standards (such as Sun Microsystem�s

NFS), to open consortia standards that are not controlled by a single vendor (such as DCE, from

OSF), and finally to open de jure international standards (as from ISO and CCITT).

Hewlett-Packard has a long-standing commitment to the use of open international standards

wherever possible, and has participated in the formation of and contribution to these standards.

Where these standards are lacking, Hewlett-Packard has worked for the development of consortia

standards for many years�for example, as active participant in X/Open and founding member of

 the OSF, OMG, and COSE. As a matter of corporate policy, Hewlett-Packard has worked to

achieve acceptance of our own proprietary standards as open, public standards and will continue

to do so. Our record of success in providing many of the standards for de jure networking

standards and contributions to major consortia attests to this commitment.

As important as it is to strive for open, vendor independent standards wherever possible, de facto

standards are still preferable to ad hoc proprietary solutions. De facto standards achieved their

status by establishing a large installed base and cannot be ignored.

As the desire to interconnect these systems is being met with new networking technologies, the

era of single vendor systems is ending. We have moved irreversibly into enterprise-wide systems

that are not only widely distributed, but include a broad range of vendors, applications, data base

systems, and data communications suppliers. This heterogeneous characteristic of the

architecture includes both hardware and software.

Open Distributed Computing

Page 8 of 21

Open Heterogeneous Distributed

Architectural
Framework

Domain-Independent Characteristics

Figure 3: Framework Derivation

Distribution of systems may be a result of business requirements, or may provide advantages in

performance and reliability. Distribution of both the information and processing has become a

pervasive requirement in modern computing.

4.1.1 Reference Architectures

The architectural framework is useful in structuring the solution, but to address the design of a

specific distributed system requires the greater detail that is found in a Reference Architecture.

Reference architectures add domain-specific characteristics to the architectural framework. A

reference architecture provides additional specifications and details to the framework. It can also

be thought of as an example system architecture useful for a particular domain.

Figure 4 on this page shows the three types of domain-specific characteristics used to create

reference architectures�business, technology and user role. A reference architecture could be

based on just one, two or all of these types of domain-specific characteristics. The business

characteristics are defined by business models and typical information system requirements for a

particular business segment. Business segments are areas such as finance, telecommunications,

manufacturing, medical, etc. Businesses are best characterized in term of business

activities�e.g., insurance claims processing, opening or closing customer accounts, etc. The

technology characteristics provide a technology model and requirements necessary to achieve

some widely used functionality. For example, a technology model may be used to describe highly

available systems. A reference architecture based on this model would provide the necessary

information required to create a highly-available distributed system.

The user role characteristics describe the model and requirements of users in a particular role.

For example, administrators will have a very different view of the system than software

developers. A reference architecture for administrators would give an example of an architecture

for supporting their work.

The Overall Architecture

Page 9 of 21

Business Technology User Role

Architectural
Framework

Reference
Architecture

Domain-Specific Characteristics

Figure 4: Reference Architectures

4.1.2 Enterprise Perspective

Enterprises are interested in a system architecture that will meet their business needs. Though

reference architectures will address the particular business segment of the industry, they cannot

be expected to address the particular needs of any one enterprise. Reference architectures can,

however, be used as a base from which to build information technology systems that meet such

business needs.

Figure 5 on this page illustrates this process. The enterprise�s business strategy drives the

information systems strategy by dictating what information is needed. The information systems

strategy defines the type and nature of information processing required to meet the business

strategy. The information technology provides the technological support to meet the information

systems strategy. Advances in information technology will evolve the information systems

strategy. This may then become one of the factors in the evolution of the business strategy.

The business strategy is based on value judgments. These value judgments are used to define and

refine the domain-independent characteristics used by the framework.

A system architecture defines the information technology system. The enterprise can base the

architecture of the information technology system on one or more Open Distributed Computing

reference architectures. Reference architectures provide a rich starting point that facilitates

creating an open, heterogeneous, distributed computing system. These reference architectures are

combined and tailored to build a system architecture that meets the specific information

processing needs of the enterprise. This process facilitates the development of an enterprise

information system that supports distributed, heterogeneous components with open systems

technologies.

4.1.3 Product Architectures

A well-architected information processing system will allow the inclusion of products from

different vendors. The products that are the components of the system have their own internal

Open Distributed Computing

Page 10 of 21

Domain-
Specific

Characteristics

Architectural
Framework

Reference
Architecture

Business
Strategy

Information
Systems
Strategy

Information
Technology

Architecture
Instance

Figure 5: Enterprise Perspective

product architecture. An enterprise should be interested in the product architectures of those

products that make up their system. A product whose architecture is based on Open Distributed

Computing will have a better fit within the system than other products. Figure 6 on this page

shows how product architectures relate to reference architectures.

There are three advantages to be gained by purchasing products based on Open Distributed

Computing reference architectures. First, the products will be able to participate in open,

heterogeneous and distributed systems. These are basic characteristics that the reference

architectures derive from the framework. Use of the reference architectures will clarify

requirements for such systems and simplify combining the components into a total systems

solution.

Second, the products address the specific needs of the domains used by the reference architecture.

The reference architectures are not meant to replace customer input. Rather, they take customer

input and use it to shape a system architecture.

Third, the products are designed to be components of a larger system. Though they can operate

on their own, they are designed to integrate easily with other products into a larger system.

4.2 The Framework Model

The model used to describe the Open Distributed Computing Architectural Framework is the

cube shown in figure 7 on page 12. The front face of the cube depicts a set of modules. These

modules describe functionality required in an Open Distributed Computing system, depicting the

first-level decomposition of the system. These modules are

base platform

distribution services

information management services

application cooperation services

utility services

applications

user interface services

These are further defined below.

The Overall Architecture

Page 11 of 21

Products
Product
Family

Architecture

Architectural
Framework

Reference
Architecture

Information
Technology

Architecture
Instance

Other
Vendors’
Products

Figure 6: Product Architecture Perspective

The third dimension, or depth, of the cube depicts the aspects of the modules. These are

fundamental characteristics required of the modules. The aspects are

function

trust

control

These are further defined in the section �Aspects� on page 15.

4.3 Modules

The modules provide the first-level functional decomposition of the system. Each module is

responsible for providing specific functionality to the system. This provides a functional

decomposition of the entire system�not of any one computer system or node. Not all nodes in

the system need to contain all the modules. Some of the functions are required to be present in

every node while others are required to exist someplace in the IT system but need not be present

in all nodes. Finally, some functions are optional, based on the needs of the enterprise.

4.3.1 Base Platform

The base platform contains the basic processing components of the IT system. By definition,

every computer system in the IT system will always have base platform functionality. This

includes the system hardware, operating system and peripherals that make up the computer

systems within the IT system. To the rest of the IT system, a computer system appears as a single

component�even if it is composed of multiple CPUs. The base platform includes characteristics

such as:

processor types (e.g., PA-RISC or Intel 80x86)

processor configuration (e.g., single CPU, Symmetric Multi-Processor)

Open Distributed Computing

Page 12 of 21

Function

Trust

Control

Base Platform

Distribution Services

User Interface Services

Applications

Information
Management

Services
U
ti
li
ty
 S
e
r
v
ic
e
s

A
p
p
li
c
a
ti
o
n

C
o
o
p
e
ra
ti
o
n

S
e
r
v
ic
e
s

Asp
ec

ts

Figure 7: The Framework Model

system bus (e.g., EISA)

operating system, including the interface (e.g., IEEE Posix 1003.1) as well as any other

special characteristics

peripherals, including common system peripherals (e.g., disk drives) as well as

special-purpose peripherals (e.g., automatic teller machines)

network infrastructure, both the cable plant and the hardware used to provide the network

(e.g., modems, repeaters, bridges, routers)

 instruments used to facilitate the operation of the IT system

4.3.2 Distribution Services

Distribution services provide the functionality that links multiple, separate computer systems into

a distributed system. They include

network services (e.g., TCP/IP, OSI network protocols)

invocation services (e.g., remote procedure call, message passing)

location services (e.g., trader, directory service)

security services (e.g., authentication service, authorization service)

system coordination services (e.g., time synchronization service)

4.3.3 Information Management Services

Information Management Services are a set of services that organize, store and retrieve

information. For example

file systems

access methods (e.g., indexed sequential files)

database systems (e.g., relational DBMS, object-oriented DBMS)

document stores

information semantics (e.g., SGML)

4.3.4 Application Cooperation Services

Application cooperation services provide facilities that enable applications to cooperate with each

other to solve a common business activity. This module builds upon the communications

provided by the distribution services and the data sharing provided by the information

management services. The module adds the coordination functionality required to enable

applications to cooperate. Typical services include

transaction processing manager (e.g., X/Open DTP standard)

enhanced messaging services (e.g., event management, reliable message queues)

object request broker (e.g. OMG's CORBA)

workflow management

agents

encapsulation facilities

Some of these services require the applications to be written with a knowledge that they will

cooperate through the service. Other services allow the application to cooperate without a priori

knowledge.

The Overall Architecture

Page 13 of 21

4.3.5 Applications

Applications supply the business logic required to support end user tasks. Applications fall into

three major categories. They can deal with

specific business activities of an enterprise (e.g., a loan-processing application for a bank or

a factory-automation application for a manufacturer). Though some of these applications

may have commonalty across business domains, they are typically specific to one domain.

Often, some of these applications will provide a competitive advantage.

general business processes frequently required by many types of businesses (e.g. human

resource management, asset control, accounts receivable). There is generally little value in

creating custom applications to address these needs and they are typically purchased from a

software provider.

personal or group productivity. Some of these may be standardized across an enterprise (e.g.,

a corporate standard word processor), whereas others may remain the personal choice of the

individual or group using them (e.g., a time management application). There is rarely value

in creating custom productivity applications.

Though in most cases customers want to buy rather then build applications, they want these

applications to work together. While general business applications are not specific to the

customer�s environment, they may need to access information that is specific to the customer�s

business.

4.3.6 Utility Services

Utility services provide general system-related functionality for applications. The focus of the

applications module is to support the end user business tasks. Utility services are applications or

libraries that facilitate using the system or help it function. For example

spooling system (e.g., print, batch job)

resource accounting service (e.g., software licensing service)

language run-time systems (e.g., Smalltalk runtime)

common libraries (e.g., math library, sort routine)

4.3.7 User Interface Services

User interface services provide the link between the system and the users of the system. These

services provide the functionality to present information to, as well as acquire information from,

the user. Presenting information may include

graphical user interfaces

desktop management

multi-media output

page description languages

Data can enter the system from multiple sources. Ideally, data is automatically captured when it

is generated. For example

point of sale terminals

bar-code readers

directly-connected analytical instruments

The functionality to deal with these types of input is part of the user interface services. As voice

and handwriting recognition systems are developed, the user interface services will provide the

functionality to deal with these new types of input.

Open Distributed Computing

Page 14 of 21

4.4 Aspects

The aspects are the fundamental characteristics of the modules that make up the system. As we

look at each module of the system, we need to examine each of its aspects. Although in some

environments some of the aspects may take on more or less importance, they all must be

considered for each component of the system. The aspects are shown in figure 8 on this page.

4.4.1 Function

The function aspect answers the question �what is the purpose of this component?� It deals with

each component�s responsibility to the system as a whole. Directly or indirectly, each component

needs to help the end users do their job. Another way of looking at this is that it answers the

question �how does it help get the job done?� The function aspect of a component is used to

place the component in the appropriate module. (This functionality aspect was discussed and

used to define the modules of the Architectural Framework).

The function aspect defines several characteristics of the components. First it defines the

interfaces to the components. The interfaces to a component provide the necessary information to

allow other components to use or access it. The interface definition needs to include not just the

syntax (what does the interface looks like?), but also the semantics (how does it behave?).

Second, the function aspect deals with the usability of the component. The usability needs to be

seen from the perspective of multiple user roles. It is not sufficient to look at the end user�s

perspective of usability (though this is a critical perspective). For example, the ease of

programming to a particular Application Program Interface (API) is also part of the component�s

usability.

The third part of the function aspect is the concept of localization�can users tailor the

component to local natural languages? Even though an application may have all the required

The Overall Architecture

Page 15 of 21

Function
Functionality, Usability, Localization

Trust
Security, Availability, Performance

Control
Management, Service, Measurement,

Accounting, Evolvution

Base Platform

Distribution Services

User Interface Services

Applications

Ap
pl
ic
a
tio
n

C
oo

pe
ra
tio
n

Se
rv
ic
es

U
til
ity

Se
rv
ic
es

Information
Management Services

Figure 8: The Framework Aspects

functionality, if it presents its information only in a language foreign to the user, it will not meet

the business goals.

4.4.2 Trust

The trust aspect answers the question of �why should you trust your business processes to the

system?� Unless the components that make up the IT system meet the required trust level, people

will not use the system. Trust has three major parts to it�security, availability and performance.

The security part of the trust aspect deals with the system�s ability to adequately protect the

information in the system. Before anyone will trust a system, they need to know that their use of

the system is secure, that their confidential information remains confidential, and that they have

access to the information that they need. Security also helps ensure that the system will be used

and not abused.

The second part of the trust aspect is availability. If the system does not meet users� availability

requirements, they will not be able to use it. Even though it does exactly what they need to meet

their business requirements, it needs to be available when they need it. Availability includes

topics such as recovery (after failures) and high availability (including fault tolerance).

The final part of the trust aspect is performance. In some environments, not meeting a certain

performance level is equivalent to failure. This defines a mandatory level of performance. For

example, a real-time video link has certain required throughput and latency requirements. If they

are not met, real-time video is impossible. Similarly, controlling a complex piece of equipment

such as a nuclear reactor has stringent response time requirements. Not meeting them could be

catastrophic.

In addition to the mandatory performance, there is the broader issue of acceptable performance.

Consider a system that does exactly what the users want, meets their security concerns, and is

available whenever they need it. However, if it impedes work to an aggravating degree or the task

is faster to accomplish manually, they are unlikely to use the system.

4.4.3 Control

The last aspect is control. This answers the question �how can you control the components so

that they behave correctly?� It also addresses evolution of the system��can the system evolve to

meet the changing business needs?� This aspect of the components should not be confused with

the management platform and applications used to manage the system. Rather, it is those aspects

of a component that allows it to be managed. There are three parts to this aspect: control,

measurement, and evolution.

Controlling a component requires manageability and serviceability. Manageability involves

controlling the component or system under normal situations. Included here are management

interfaces to components. These define the interface into a component used to control it.

Serviceability deals with being able to fix things when they break (or protect them from

breaking). Must someone be physically present to fix something or can it be fixed remotely? Can

an impending failure be detected? Is preventive maintenance required, and if so, can it be

accomplished automatically and remotely?

There are two types of measurements that must be made on components. The first deals with the

performance and state of the component. This is closely related to both manageability and

serviceability. The second type of measurement involves the accountability of the component.

This involves accounting for its usage. Typically, enterprises charge costs to the users of a

service. The granularity of what to charge for depends on the particular business guidelines of the

enterprise. This granularity will dictate which components need to account for their utilization.

Open Distributed Computing

Page 16 of 21

Finally, the control aspect covers the ability of the component to evolve. Over time, the business

strategy of the enterprise will change. This, together with the availability of new technology, will

drive the evolution of the IT system. The more adaptable a component is, the longer a life it will

have in the continually-evolving system.

5 Process � The Question of �How to?�

A process defines the actions required to meet a particular goal. The business and Information

System models define the business processes of an enterprise. These are the processes that meet

the business goals of the enterprise. Example business processes involve manufacturing, customer

support and new product development. As enterprises seek to improve the quality of the product

and service that they deliver, these business processes are being defined and formalized. The ISO

9000 standards are providing a strong push in this direction.

Many of the business processes use the IT system to implement or support them. This is another

way of viewing the primary purpose of the IT system�supporting the end user.

5.1 IT Processes

The IT system is involved with processes in another way. Figure 1 on page 3 introduces processes

as part of the overall system architecture. In a traditional system, these would be the processes

required to operate the system. However, IT systems are constantly evolving and adapting to the

changing needs of the enterprise. Because of this, Open Distributed Computing broadens the

scope of the processes to include those required to design, build and run the system. Though there

is a strong link between the processes and user roles, all processes may involve people in

different user roles.

5.1.1 Designing IT Systems

The process for designing a distributed system starts with a model of an enterprise�s Information

System. Taking this, together with the enterprise�s business policies and guidelines, the process

creates an architecture and engineering design for the system. Though the initial design of the IT

system is important, the focus of the process definition needs to be on the continual evolution of

the system. Hewlett-Packard�s IT Planning Methodology is an example of a process for designing

a distributed system.

Some of the processes that are used to design the IT system are

collect user needs

define IT policies and procedures

create the architecture

develop a design

evolve the system architecture as dictated by business or technology changes

5.1.2 Building IT Systems

The process to build a system involves two separate parts. The first is a process for building

components of the system. The many different software methodologies available address this. The

second part is a process for integrating components into a system. As with the designing of the IT

system, the processes for building the system need a strong focus on adding on to an existing

system, rather than building a system from scratch.

Example processes used to build an IT system are

software development

The Overall Architecture

Page 17 of 21

documentation

scenario prototyping

system integration

configuration

acceptance testing and certification

5.1.3 Running IT Systems

The final set of IT Processes deal with keeping the system running. These include all the

maintenance and administration processes. Examples are

fault isolation, recovery and repair

service activation

preventive maintenance

reconfiguration

usage trend analysis

5.2 Understanding IT Processes

As we seek to understand any process, we can look at four questions�what? who? how? and

why? Answers to these questions give us knowledge in two different areas�the tasks of the

process and the context of the process. Knowledge of the tasks involved in a process gives us an

understanding of the steps required to achieve a goal. Proper knowledge of the steps allows a

formal definition of the process.

The context of the process places the process within a larger scope. Understanding the process�

context involves understanding the goal to be achieved. This includes knowing the value,

justification and risks of the goal, as well as how this goal is related to other goals. The process�

context also involves knowing, and being able to measure, success and failure. The context

knowledge has a strong link to the user roles through which people interact with the system. A

knowledge of the process context is vital in optimizing the process.

5.2.1 Defining IT Processes

Most processes are not single monolithic steps. Rather, they can be decomposed into parts that

together accomplish the intended goal. We see processes as composed of activities, which in turn

are composed of tasks.1 The purpose of defining the process is to document the activities and

tasks that form the process. To be useful in later stages, the process needs to be defined using a

formal method. Each task, activity and process needs the following defined:

Startup criteria�what causes this task to be started?

Inputs�what input is provided to us to accomplish the task? Is all the input always available

before the task can start?

Tools�what tools are available to help accomplish this task? Are the tools required or

optional?

Outputs�what output does the task generate? Is the output used as input to another task?

Completion criteria�how do we know that we have finished the task?

Metrics�what do we measure to know how well we have accomplished the task?

1 This is a somewhat arbitrary breakdown. In reality, processes can be recursively decomposed into

smaller and smaller steps. At some point, further decomposition becomes counter-productive.

Open Distributed Computing

Page 18 of 21

In addition to the above, activities need to have a description of the tasks, and their relationships,

that together form the activity. Similarly, the process needs a description of the activities that

form it.

Having the processes defined in these terms allows us to go to the next step�optimizing the

processes.

5.2.2 Improve IT Processes

The goal of understanding and defining the IT processes is to be able to improve them.

Improvement takes several different (simultaneous) approaches. For the defined tasks, activities

and processes, we need to

eliminate those that are unnecessary

automate those that don�t require intervention from a person

allow them to occur in parallel

Redefining the processes can accomplish some of this improvement. This requires a good

understanding of the context of the process. This type of improvement can be done by examining

the task and activity definitions. With an understanding of the process context, it is possible to

eliminate some tasks because they do not substantially contribute to the desired goal.

A more thorough improvement of the processes involves understanding the effectiveness of the

processes as defined. The effectiveness is evaluated using the metrics that are part of every task�s

definition.

However, the most thorough improvement of the processes requires viewing the overall

architecture of the system. We cannot look just at the processes but also need to examine the user

roles and technology that make up the system. To improve efficiency of the system, it may be

advantageous to redefine user roles or change some of the technology in the system. Such a

holistic view requires an iterative evolution of the system. Though not easy, the results are a

smoothly running system that successfully addresses the business objectives of the enterprise.

The Overall Architecture

Page 19 of 21

6 Glossary

Architectural Framework A high-level model and a set of guidelines for building system

architectures.

Architecture Instance The system architecture for the Information Technology system of

a particular enterprise or part of an enterprise. �A formal

specification of the way the � computing solution will be

organized and executed.� [Gartner93]

Business Model A description of an enterprise. It includes business goals,

organization and procedures.

Business Policies &

Guidelines

A body of rules by which an enterprise is operated. Policies are

usually mandatory whereas guidelines are suggestive.

Client/Server Computing �A processing model in which a single application is partitioned

between multiple processors (front-end and back-end) and the

processors cooperate (transparent to the end user) to complete the

processing as a single unified task. Client/Server computing is

endlessly recursive; in turn, servers can become clients and

request services of other servers on the network.� [Boar93]

Domain A collection of enterprises, technologies or user roles sharing

common characteristics. Domains can be based on one or more

types of characteristics (business, technology, or user-role).

Information Systems (IS) The processing of information required to implement the business

functions of an enterprise.

Information Technology

(IT)

The technological support to an enterprise to meet its Information

System needs. Information Technology includes computers,

networks, applications, data bases and support services.

Infrastructure An implementation of a fundamental and common set of

components in the system.

IT Policies & Guidelines Rules for building the IT system. These are derived from

requirements or can come from Business Policies and Guidelines,

external regulations, or standards that must be followed in a

particular domain. Policies are usually mandatory whereas

guidelines are suggestive.

Methodology A body of methods and rules to be followed as a structured

discipline.

Modules A set of components or subsystems related through providing

similar functionalities.

Overall Architecture �Includes the structure not only of the system, but of its functions,

the environment within which it will live, and the process by

which it will be built and operated.� [Rechtin91]

Process A series of actions or operations used to achieve a particular

result.

Reference Architecture An example system architecture addressing a specific domain.

Subsystem A proper subset of a system, which is a system in its own right.

System �A set of different [components] so connected or related as to

perform a unique function not performable by the [components]

alone.� [Rechtin91]

Open Distributed Computing

Page 20 of 21

System Architecture �The structure of the system.� [Rechtin91]

System Design Full specification of an Information Technology system for a

particular enterprise. Based on an Architecture Instance, it

specifies all product and version information required as well as

topology information.

User Role A classification of the different ways users interact with the

system.

7 References

[Boar93] Bernard H. Boar, Implementing Client/Server Computing, McGraw-Hill Inc.,

1993.

[Gartner93] W. Melling, �Strategies for Architectural Transition�, Midrange Computing

Strategies R-286-114, Gartner Group, March 1993.

[Rechtin91] Eberhardt Rechtin, Systems Architecting: Creating & Building Complex

Systems, Prentice Hall, 1991.

8 Acknowledgments

Numerous people assisted with the writing of this paper. Contributions came as discussions,

direct input, and reviews of draft copies. In particular, the people working on the Information

Technology Strategy project provided valuable input. That project includes people from the

Professional Services Division as well as HP Consultants. This assured that there was a direct

link with customer requirements.

The Overall Architecture

Page 21 of 21

